
K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 201–212, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Automatic Creation of Team-Control Plans Using an
Assignment Branch in Genetic Programming

Walter A. Talbott

Stanford Symbolic Systems Program
Stanford University

Stanford, California 94305
wtalbott@stanford.edu

Abstract. This paper is concerned with the introduction of a method for
allowing genetic programming to automatically create team-control plans using
an assignment branch. Team-control plans are representations of the
composition and behavior of groups of agents and include the definition of one
or more roles. Genetic programming is a general problem solving technique,
and using genetic programming as a means for creating team plans would allow
the user to specify very little, while producing effective results. I propose to
show that the use of what I call an assignment branch in genetic programming
provides a robust and general way to approach team composition and role
definition problems.

1 Introduction

The creation of team-control plans is a problem that has become more pertinent as the
power of computing has increased and as the sophistication of artificial intelligence
methods has led to the improved ability to design situated agents. A team-control plan
defines how a group of these agents act in combination with one another to solve
problems and accomplish complex tasks. For most of these team plans, human
designers must specifically define the way that the team will act. Because of the high
level of human involvement, these teams are not as artificially intelligent as they could
be. Genetic programming has recently emerged as a robust, domain-independent
method for automatically generating the solution to difficult problems. It seems
natural, therefore, to use the power of genetic programming for team organization and
design problems.

A suitable problem for the exploration of genetic programming’s aptitude for
creation of team plans will ideally be impossible to solve without teamwork of some
kind, and will require the creation of different roles. I define a role as a set of
instructions that a subset of the team will carry out. If the team were intended to play
soccer, for example, there would be roles for each position: goalkeeper, defense, and
offense. Roles allow for much more elaborate team plans, and hence for the solution
of much more elaborate problems, but are proportionately more difficult to create
without much human intervention. Luke and Spector (1996), for example, apply
genetic programming to multiple role teamwork problems, but require the number of
roles to be selected beforehand. This paper will explore a method for automatically
creating team plans, number of roles included, with genetic programming, using an
artificial agent problem as an illustrative, if simple, problem domain.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

202 W.A. Talbott

1.1 The River Crossing Problem

The problem consists of a nine-by-nine toroidal world, in which there are a number of
artificial agents that can move and interact with food pellets. Each agent can face in
one of four directions, can be carrying either one or zero pieces of food at a time, and
has an assigned role. The exact functions for control of the agents are described in
Tables 1-3. The world has one strip that I define as the goal strip, to which the agents
must move all the food pellets. The goal strip is surrounded on both sides by two rows
of water, and this water is deadly to the agents. When an agent moves onto a square in
the water, the agent dies, and can no longer gather food or move in any way. The dead
agents, however, form a bridge for the remaining agents, such that if an agent moves
onto a water square that has already been visited by another agent, the current visitor
can continue to move as if it were on land. The agents are given a limited number of
time steps to move the food, both so that the genetic programming run will eventually
stop, and so that solutions are reasonably quick. Figure 1 shows an example world
after an intermediate number of time steps.

The problem is designed to promote the need for teamwork, since no single agent
could move even one pellet to the goal strip. Also, the problem is designed to facilitate
a solution involving more than one role, but this facet of a solution is not strictly
necessary. A solution, for instance, might benefit from designating a certain number of
agents to the creation of a bridge, and the remaining agents to the collection of food.
Because the creation of roles is not strictly necessary, I can also use this problem to
compare solutions involving multiple roles to solutions with only one role. The
success of the method in creating multiple roles is described further in the Results
section below.

This paper is organized as follows. It first presents the methods used for
representing the problem appropriately for genetic programming. Then, it presents the
results gathered from four different experiments, and discusses these results. Finally, it
suggests areas of possible future work and areas to which the results might be applied.

Fig. 1. Shows a world with four agents and five pieces of food. Two food pellets have
successfully been placed on the goal strip.

2 Methods

Approaching the river-crossing problem and team control problems in general, with
genetic programming methods offers several benefits. If biology is any example, it is

Automatic Creation of Team-Control Plans 203

clear that the basic principles of genetic programming have already been successful in
nature; look at any pack of predators, or any school of fish. Genetic programming is
an algorithm that uses the selection pressures found in natural systems to improve a
randomly generated population of programs. These programs are built up from sets of
terminals and functions into trees, as described by Koza (1992). Expressing the
control of artificial agents with the population of tree-like programs for which genetic
programming calls is relatively straightforward. Following the example of using zero-
argument functions as terminals set by Koza’s work with artificial ants (1992), I
describe the movement of agents with the terminals outlined in Table 1.

Table 1. Description of zero-argument functions used as terminals.

Terminal Name Description
MoveForward Moves the agent one square in the direction that it is facing.

TurnLeft Rotates the agent 90 degrees counter-clockwise.

TurnRight Rotates the agent 90 degrees clockwise.

PickUpFood Picks up food if the agent is currently on a square with food.
Each agent can only carry one pellet at a time.

DropFood Drops food on the current square if the agent is carrying food.

NoOp The agent remains exactly how it is.

Table 2. Description of the functions used in the program tree

Function Name Description
Prog2 Executes the two arguments in succession.
Prog3 Executes the three arguments in succession.
IfAtFood Executes the first argument if the agent is currently on a square

with food, and the second otherwise.
IfWaterAhead Executes the first argument if the agent is facing a square with

water and no agent bridge, and the second otherwise.
IfCarryingFood Executes the first argument if the agent is carrying food, and the

second otherwise.
IfGoalStrip Executes the first argument if the agent is currently on the goal

strip, and the second otherwise.
IfBridgeAhead Executes the first argument if the agent is currently facing a

square with an agent bridge, and the second otherwise.
ADF0 Executes an automatically defined function (Koza, 1992) that

can use all previously listed functions.
ADF1 Executes an automatically defined function that can use all

previously listed functions, including ADF0.
ADF2 Executes an automatically defined function that can use all

previously listed functions, including ADF0 & ADF1.

With these terminals defined, the programs can use the functions in Table 2 to
further control the action of the agents under certain conditions.

204 W.A. Talbott

Using these terminals and functions, the experiments described in this paper define
an individual in two different ways. One group of experiments uses a tree structure
where only one role is allowed. The result-producing branch of the tree represents this
role, and is executed once for each agent at every time step. The result-producing
branch can call any of the automatically defined functions, which are each in turn
represented by their own branch of the tree.

It seems, however, that at least the ability to support more than one role would
expand the range of possible problems to which genetic programming could be
applied, and make more powerful the solutions to the problems it can already create.
Towards that end, the other group of experiments involves the use of an entirely
separate branch, whose function set is entirely different than the result-producing
branches. This is the assignment branch, and allows the genetic programming run to
assign different numbers of agents to different roles. For the purposes of these
experiments, up to three roles were allowed, and were represented by three result-
producing branches. Proposed methods for automating the number of roles entirely are
discussed in the Future Work section below. The functions of the assignment branch
are defined in Table 3. During evaluation of the program, the assignment branch is run
first, to set up the role of each agent in the world, and also how many total agents are
present. These experiments cap the number of agents due to time constraints on each
run. The assignment branch removes the necessity for team plans to rely on brute-
force repetition of the same set of instructions for each agent. Simultaneously, it
allows for efficiency of specification, since agents can be grouped together rather than
defined independently and with a high chance of redundancy.

Table 3. The Functions and Terminal of the Assignment Branch

Function
Name

Description

Role1 This function takes one integer argument, and inserts that number
of agents into the world, all of which are assigned to role 1. If the
maximum number of agents has already been assigned, this
function does nothing.

Role2 This function takes one integer argument, and inserts that number
of agents into the world, all of which are assigned to role 2. If the
maximum number of agents has already been assigned, this
function does nothing.

Role3 This function takes one integer argument, and inserts that number
of agents into the world, all of which are assigned to role 3. If the
maximum number of agents has already been assigned, this
function does nothing.

Prog2 Executes the two arguments, and arbitrarily returns the value of the
first argument.

Random
Constant

The only terminal for the assignment branch, the random constant
is an integer that is used to specify how many agents of each role
are present.

Automatic Creation of Team-Control Plans 205

2.1 Sample Branches

The following are illustrations of the structure of the branches used to represent each
agent. They have been simplified greatly, and do not come close to solving the river-
crossing problem, but serve to highlight the difference in structure between the result
producing branches and the assignment branch. The automatically defined functions
have been left out for simplicity, since they are nearly identical to a result producing
branch.

Result-producing Branch:
(Prog2 (IfGoalStrip DropFood MoveForward)
 (Prog2 (IfAtFood PickUpFood MoveForward)
TurnLeft))

This branch represents an agent that, at each time step, will detect whether or not it
is on the goal. If it is, it will attempt to drop food, the success of which depends on
whether it is carrying food. If it is not, it moves one square forward. Then, regardless
of the outcome of the goal test, the agent will test whether it is at food, pick it up if it
is, and move forward otherwise. To end the time step, the agent will always turn left.
The result producing branches are limited to a depth of 17, which did not seem to
eliminate possible solutions. A depth of 17 allows a program with up to 317 =
129,140,163 nodes, which should be far more than sufficient for this problem.

Assignment Branch:
(Prog2 (Role1 (Role2 5)) (Role3 (Role3 2))

The assignment branch listed above assigns 5 agents to roles one and two, and 4 to
role three, for a total of 14 agents. Each Role function returns the same integer that it
takes as an argument, so the assignment branch chains backwards from the last node to
the first, stopping when the maximum number of allowed agents has been reached.
Note that, because constants are terminals, it is possible to have an expression such as:
(Prog2 4 5)
In such a case, no agents are assigned, and the individual would receive the worst
possible fitness since none of the food can move itself. Because the assignment branch
is only run once per individual, and because individuals such as this are quickly
eliminated from the population, this quirk is acceptable.

2.2 Fitness Evaluation

Since it is desirable to generate a solution that is general enough to solve the river-
crossing problem independent of where the food is located, the fitness is evaluated
based on two fitness cases. The first case scatters the food across the squares of the
board, and the second places all of the food in one square. The raw fitness of each
program is just the number of food pellets that ended up on the goal strip, which is
also the number of hits. A run terminates successfully when an individual has a raw
fitness equal to the number of food pellets that exist in the world, over all fitness
cases. Another experiment also evaluated fitness based on the number of steps it took
to complete; raw fitness was the total number of food pellets present over all fitness
cases minus the amount of food placed on the goal strip, plus the total number of steps

206 W.A. Talbott

it took. If a program did not get all the food pellets of a particular fitness case onto the
goal strip, it could not complete that case in less than the maximum number of steps
allowed, and so only those individuals who were relatively fit to begin with could gain
from being faster. Because of this, the fitness evaluation with steps included can
distinguish between individuals who would otherwise seem similar. This
discrimination allows the comparison between successful individuals of the two types
described earlier: those limited to one role, and those with the assignment branch.

2.3 Breeding and Run Parameters

These experiments use the breeding phases that were provided as default with lil-GP,
the genetic programming software package in which the experiments were carried out.
Each phase consists of tournament-selection for crossover 90% of the time and
reproduction 10% of the time. Crossover could happen only between similar branches
of the two parent trees. This is to isolate the evolution of the individual roles in the
assignment branch individuals. Since they are somewhat structurally complex, inter-
branch crossover might slow the progress of the evolution because it would introduce
more noise into the process, which is not necessary for a problem of this magnitude.
Mutation was not included, though it arguably should have been. Especially in the
assignment branch, mutation could have helped fine-tune the random constants that
were present, rather than forcing the program to rely on those constants generated at
initialization.

Table 4. Tableau for the river crossing problem

Objective: To produce a solution to the river crossing problem that uses the
assignment branch, and compare with a solution that only uses
one role.

Terminal set: MoveForward, TurnLeft, TurnRight, PckUpFood, DropFood,
NoOp, as defined earlier.

Function set: One Role Individuals, defined in table 2.
Assignment Branch Individuals, defined in table 3.

Fitness
cases:

Two, one in which the food is scattered across the world, and
one in which the food is stacked in one square

Raw fitness: In some runs, raw fitness is the number of food pellets deposited
on the goal strip. In others, it is the number of pellets on the goal
strip weighted by the steps it took to get them there.

Hits: Each pellet that ends up on the goal strip is counted as a hit.
Wrapper: None.
Parameters: M = 13,000 G = 95
Success
predicate:

When an individual placed all food pellets on the goal strip, the
run was terminated successfully, except on the runs where time
mattered in the fitness, in which case the runs continued until all
generations completed.

These runs were done with population size M = 13,000 and allowed to run until G =
95 generations. The population size, in some of the early runs, was set as high as
75,000, but each of these runs took up to about 48 hours. The reduced population size

Automatic Creation of Team-Control Plans 207

decreased each run to about 10 hours, and seemed sufficient for the problem. Because
the structure of the programs is fairly cumbersome, with seven branches total in the
individuals with the assignment branch, the number of generations has to be high
enough to allow the single-node crossover operator to rearrange enough of the
branches to form a good solution. In fact, 95 may be too low, but it was sufficient for
these experiments. Table 4 presents the tableau summary of the method just described.

3 Results

The experiments lend themselves to a categorization into eight different groups. Each
group will be presented in turn, and the results will be discussed in section 4 of the
paper, below. The individuals limited to one role will be called simply one-role
individuals, and those with the assignment branch will be called branch individuals.
The fitness evaluation that takes only hits into account will be called basic fitness,
whereas the evaluation that includes time steps will be called step fitness. The final
difference between runs involved what happened when an agent that was carrying
food hit the water. Originally, the agents would not be allowed to drop their food
before they died and could no longer act. This required any fully successful plan to
specify that no agent could ever hit the water if it was carrying food, which proved to
be fairly difficult. And intuitively, this requirement seems to suggest the use of
multiple roles, one for solely forming the bridge and leaving food alone, and one for
gathering food. When this requirement was relaxed, agents that hit the water
automatically dropped their food so that others could resume in their place. Runs
where the requirement was in place will be called no-drop runs, and those without the
requirement will be called drop runs. In every experiment, two fitness cases were
used, with 25 food pellets each, which makes the highest possible hit score 50. In
every experiment with a step score included, 150 steps were the maximum for each
fitness case, so at most 300 is added to the difference between 50 and the number of
hits to give the raw fitness score. A lower fitness score is better, with 0 being the best.

3.1 Basic Fitness with Drop

In all experiments conducted with basic fitness and drop, a solution was found before
the 20th generation. Both one role and branch individuals solved the problem easily,
and there were about as many single-role branch individuals as not. This group’s
results bear mentioning only for the sake of completeness.

3.2 Step Fitness with Drop

Given that the drop problem can be solved easily, I present the results of step fitness
runs that allowed drowning agents to drop food in table 5.

Table 5. Results for Step Fitness Runs With Drop

Generation of Best of Run Nodes Hits Fitness
One Role 64.75 567 43.75 107.75
Branch 86 637 46.67 80.6

208 W.A. Talbott

The numbers in the table are averages over all the runs conducted in this group.
The generation of the best of run does not necessarily imply that a solution was found
at the listed generation. The number of nodes is a good measure of structural
complexity. It should be noted that in these runs, hits is not the same as fitness,
because fitness is defined as the number of steps it takes the individual to complete its
task. It is somewhat unfair to define solution as 50 hits in runs where steps contribute
to the fitness function, because genetic programming is blind to hits, and only selects
based on fitness. However, because individuals that get all the food to the goal strip in
both fitness cases have such an advantage in the fitness measure, I are fairly safe
defining solution as 50 hits. Out of the runs that did solve the problem, all but two
resulted in fitness ratings below 50, and one of the one-role runs produced an
individual with a fitness of 16. Of the branch individuals that solved the problem, 2
presented solutions with two distinct roles, and 2 presented solutions with only one.

3.3 Basic Fitness with No Drop

The problem changes drastically when no drowning agent is allowed to drop the food
that it may be carrying. Of all the runs performed, only one produced a solution,
though most came close. An assignment branch run generated the single solution, and
the individual is partially presented below. All assignment branch runs resulted in the
production of two roles. Table 6 outlines the results of these runs.

Table 6. Results for Basic Fitness Runs With No Drop

Generation of Best of
Run

Nodes Hits Fitness

One Role 35.25 354 41.5 8.5

Branch 55.75 424.5 43.5 6.5

This case is the most difficult for the process to solve, so the runs that produced the
best results deserve closer inspection. Figure 2 and Figure 3 present a generation-by-
generation breakdown of the hits from the best runs of the One Role and Branch tests.
Figure 2 shows the highest number of hits achieved by any individual at each
generation, and Figure 3 shows the mean number of hits over all individuals in each
generation. Notice that the assignment branch run ended at generation 26, after which
it terminated since the success predicate was achieved. The one role run stopped at
generation 95, after failing to fulfill the success predicate. Both figures stop at
generation 48, because the best individual from the entire one-role run was created in
that generation.
Because only one individual managed to solve this problem, I will examine its
assignment branch, printed in its entirety below.

ASSIGN:
 (role1 (prog2 (role1 (prog2 (role1 3) 4))
 (role1 (role3 (prog2 (role1 (role1 1))
3)))))

Automatic Creation of Team-Control Plans 209

Best Hits by Generation

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45

Generation

H
it

s one role

assignment

Fig. 2. Shows the highest hits achieved by an individual at each generation in the run.

Mean Hits by Generation

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

Generation

H
it

s one role

assignment

Fig. 3. Shows the mean hits achieved at each generation in the run. Notice that the assignment
branch run stops at generation 26, when a solution was found.

The assignment branch has the effect of introducing 13 agents into the world,
interestingly 7 less than the maximum of 20. 12 of these are role one agents, and 1 is a
role three agent. Because the rest of the program is so complex, I will forego an
analysis of the functionality of the program, letting it suffice to say that both role one
and role three are substantive, and proscribe different courses of action for the agents
they control. Because these roles are generated genetically, they do not define roles as
humans might, with an explicit purpose for each, but instead piece together ideas that
work to form something that is not intuitive to a human observer.

3.4 Step Fitness with No Drop

Though it is clear that a solution to the no drop restriction is very hard to produce, this
next group defines its fitness by how quickly the agents can complete their task.
Therefore, the hits are not as important as the overall fitness, since there is no
selection pressure generated based on the number of hits. Although hits increase the
fitness, they contribute only a small amount in comparison to the number of time steps
taken. The results from these experiments are presented below in Table 7.

210 W.A. Talbott

Table 7. Results from Step Fitness runs with No Drop

Generation of
Best of Run

Nodes Hits Fitness

One Role 59 406 35 270
Branch 56 342 29 251

Here I again run into the unfairness of defining a solution as 50 hits, because the
runs that do not allow agents to drop food before they die are difficult to solve. This
difficulty in getting individuals who can solve both fitness cases drives the population
towards individuals who can quickly solve one of the fitness cases, and who do not
necessarily perform well on the other. One possible, but untested solution to this is to
alter the fitness function so that it only subtracts steps from the total fitness if all fifty
hits have been achieved.

4 Discussion

These results show that, in all meaningful categories, assignment branch runs
outperformed runs with only one role. The one category in which there was no
improvement was not a difficult problem at all, and both solved it easily.

In general, the ratio of fitness of the assignment branch best-of-run individuals to
one-role individuals was 1.2. In such a small problem, this increase is significant.
Given that solutions can be found with only a single role, it is satisfying to note that an
approach with less human involvement than the explicit creation of one role can
provide such an increase in performance. Intuitively, note that solutions that allow
more than one role are more likely to solve the problem since they can represent more
complex tasks. The results presented in Figure 3 show the improvement over the one
role method most clearly. The mean number of hits is much higher in the assignment
branch runs. It seems reasonable to assume that had the run continued, the mean
would have continued to increase. This is a good sign, because a higher mean
suggests a more likely solution, and suggests that the assignment branch runs
outperform one role runs. Perhaps it would have been better to observe the difference
between a run that explicitly enforced the existence of two roles and the assignment
branch runs. After running a few preliminary trials in explicitly enforcing more than
one role, there still seems to be an improvement in fitness with the assignment branch
runs over the hard-coded runs. This is most likely due to the fact that with the
assignment branch, the genetic programming run can tailor a solution to the problem
at hand, including both the number of agents in each role, and the total number of
agents needed. Runs where the user must specify these parameters are confined to
what is not necessarily the optimal configuration, or even a configuration that would
allow a solution at all. The more general approach of the assignment branch is an
attractive benefit. However, since the ultimate goal of this paper is to provide a
method for applying genetic programming to automatically generate team plans, the
increase in performance over even the simpler representation is a surprising bonus,
and I would have been happy with comparability in performance.

Automatic Creation of Team-Control Plans 211

It is interesting to observe that the generation at which the best of run individual
was created was lower, with few exceptions, such as in the examples of figure 2 and 3,
in individuals from the runs limited to one role. This suggests that one role individuals
more quickly converge on their best answer. Runs with the assignment branch, since
they are much more structurally complex, take longer for the crossover operation to
shuffle meaningful parts of the tree around. This increase in the number of generations
needed for the distribution of genetic information in the assignment branch runs does
not seem a drastic setback to the assignment branch’s utility in the creation of team
plans, especially when weighed against the clean-hands approach and the benefit in
fitness that the assignment branch affords. In fact, it could be the relative slowness of
the assignment branch runs to converge that gives them an advantage in fitness. The
one role runs might prematurely converge on a suboptimal result, and have no way to
recover. However, most of the evidence seems to point to the fact that the assignment
branch runs perform better because they allow for the automatic configuration of both
the roles and the total number of agents present in each role.

5 Conclusions

I have shown that using an assignment branch to create team plans in the domain of
artificial agents not only works as a method of removing responsibility from the
human user of genetic programming, but also outperforms methods where the number
of roles and number of agents in each role is set by the user before the run begins. My
method leverages the innate power of genetic programming to tailor solutions closely
to the problem, and though it may require longer runs to generate solutions, the
tradeoff of having the computer automatically generate all aspects of the solution is a
tempting one. Also, the assignment branch seems to have potential as a method for
harnessing the power of genetic programming for the specific domain of multi-agent
and teamwork problems.

6 Future Work

Though I have already shown some benefit to the assignment branch approach, it
would be valuable to subject it to a more rigorous test. First, it would be beneficial to
try the experiment using architecture altering operations (Koza, 1994) to allow the run
to create the branches for each role as needed. This would require dynamic alteration
of the function set of the assignment branch, and also an incorporation of mutation for
at least the assignment branch so that the new role could have a chance to be
incorporated into the solution. This would, of course, increase the time necessary for
each run, since it might get stuck waiting for a mutation to occur, and would introduce
difficulties if crossover occurred between individuals that had different roles defined.
However, the benefit seems worth the potential difficulties.

Further work should be done in expanding this approach to more complex and
demanding teamwork problems, such as the control of search and rescue teams, or of
robot soccer teams. Also, introduction of support for genetically-defined
communication between members of the team would be an interesting endeavor.

212 W.A. Talbott

References

Koza, John R. 1992. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: The MIT Press.

Koza, John R. 1994d. Architecture-Altering Operations for Evolving the Architecture of a
Multi-Part Program in Genetic Programming. Stanford University Computer Science
Department technical report STAN-CS-TR-94-1528. October 21, 1994.

Luke, Sean and L. Spector. 1996. “Evolving Teamwork and Coordination with
Genetic Programming”. In Genetic Programming 1996: Proceedings of the First Annual
Conference. 141-149.

	1 Introduction
	2 Methods
	2.1 Sample Branches
	2.2 Fitness Evaluation
	2.3 Breeding and Run Parameters

	3 Results
	3.1 Basic Fitness with Drop
	3.2 Step Fitness with Drop
	3.3 Basic Fitness with No Drop
	3.4 Step Fitness with No Drop

	4 Discussion
	5 Conclusions
	6 Future Work

